Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
It is well established that near-field radiative heat transfer (NFRHT) can exceed Planck’s blackbody limit1 by orders of magnitude owing to the tunneling of evanescent electromagnetic frustrated and surface modes2-4, as has been demonstrated experimentally for NFRHT between two large parallel surfaces5-7 and between two subwavelength membranes8,9. However, while nanostructures can also sustain a much richer variety of localized electromagnetic modes at their corners and edges,10,11 the contributions of such additional modes to further enhancing NFRHT remain unexplored. Here, we demonstrate both theoretically and experimentally a new physical mechanism of NFRHT mediated by these corner and edge modes, and show it can dominate the NFRHT in the “dual nanoscale regime” in which both the thickness of the emitter and receiver, and their gap spacing, are much smaller than the thermal photon wavelengths. For two coplanar 20 nm thick SiC membranes separated by a 100 nm vacuum gap, the NFRHT coefficient at room temperature is both predicted and measured to be 830 W/m2K, which is 5.5 times larger than that for two infinite SiC surfaces separated by the same gap, and 1400 times larger than the corresponding blackbody limit accounting for the geometric view factor between two coplanar membranes. This enhancement is dominated by the electromagnetic corner and edge modes which account for 81% of the NFRHT between the SiC membranes. These findings are important for future NFRHT applications in thermal management and energy conversion.more » « less
-
Abstract Harvesting waste heat for useful purposes is an essential component of improving the efficiency of primary energy utilization. Today, approaches such as pyroelectric energy conversion are receiving renewed interest for their ability to turn wasted energy back into useful energy. From this perspective, the need for these approaches, the basic mechanisms and processes underlying their operation, and the material and device requirements behind pyroelectric energy conversion are reviewed, and the potential for advances in this area is also discussed.more » « less
-
The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3. Electric-field-driven enhancement of the pyroelectric response (as large as − 550 μC m−2 K−1) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert lowgrade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm−3, 526 W cm−3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.more » « less
-
Abstract Temperature‐ and electric‐field‐induced structural transitions in a polydomain ferroelectric can have profound effects on its electrothermal susceptibilities. Here, the role of such ferroelastic domains on the pyroelectric and electrocaloric response is experimentally investigated in thin films of the tetragonal ferroelectric PbZr0.2Ti0.8O3. By utilizing epitaxial strain, a rich set of ferroelastic polydomain states spanning a broad thermodynamic phase space are stabilized. Using temperature‐dependent scanning‐probe microscopy, X‐ray diffraction, and high‐frequency phase‐sensitive pyroelectric measurements, the propensity of domains to reconfigure under a temperature perturbation is quantitatively studied. In turn, the “extrinsic” contributions to pyroelectricity exclusively due to changes between the ferroelastic domain population is elucidated as a function of epitaxial strain. Further, using highly sensitive thin‐film resistive thermometry, direct electrocaloric temperature changes are measured on these polydomain thin films for the first time. The results demonstrate that temperature‐ and electric‐field‐driven domain interconversion under compressive strain diminish both the pyroelectric and the electrocaloric effects, while both these susceptibilities are enhanced due to the exact‐opposite effect from the extrinsic contributions under tensile strain.more » « less
An official website of the United States government
